会员书架
首页 > 科幻灵异 > 从全能学霸到首席科学家TXT > 第七十五章 七月出征

第七十五章 七月出征(第1/2 页)

目录
最新科幻灵异小说: 恶女快穿:狂撩绝嗣男主后失控了重生星际,指挥官夫人茶得可怕末世,我能吞噬万物要系统有啥用一世为臣被读出心声,我成了怪物们的小饼干未婚夫有点可爱废材怎么了?天才主角他超爱!病美人的温柔雌君是清冷上将二缺一灰与白夫郎是村霸,那咋了被我渣过的前男友变疯批了警探从港综开始重生囤货,她携顶级空间杀穿末世末世:囤百亿物资,圈养人类末日降临,但女友成了神级丧尸幽影鬼事别人破案我直接看答案末世重生,我靠清洁系统成名人末世重生:我不是尸祖

当然,林晓能够直接看出来,说明得出这个结论也并不难。

至于如何证明这个结论,对林晓来说也同样没什么难度,只不过想了想,他直接写下:

观察4n+3和mp,我们易得mp都是形如4n+3这种形式的数。

对于论文中有些不重要的步骤,大佬们一般都是直接用‘显而易见’、‘易得’等话语就直接略过去了,而对于林晓来说,虽然他自认不是大佬,不过用上一用还是没问题的。

“嗯,这里算是搞定了,现在可以将4x+3代入之前的关系式中了。”

林晓继续接下来的步骤。

只不过,虽然有了4x+3,但是接下来的步骤中依然困难重重,想要真正完成,依然还有些困难。

而时间也就这样慢慢过去,以林晓当前3%的大脑开发度,面对这样的难题依然得犯难,毕竟相对来说,讨论梅森素数分布的难度,是要比他之前研究的斐波那契数列更加困难。

……

对于正整数a,b,我们定义一个关于f2的梅森素数(多项式)为一个形式为1+x^a(x+1)^b的不可约多项式。在这种情况下:最大公约数gcd(a,b)1并且(a或b是奇数)……

对于sf2,表示为:—s由s用x+1代替x得到的多项式:s(x)s(x+1)……

“这样就进入到了多项式的领域了。”

林晓的变换构造函数中,就需要进入多项式当中,这样才能实现他对非线性多项式的统计。

但是,梅森数终究和斐波那契数列不同,我们可以将斐波那契数列列出无限个,但是梅森数,却始终受到我们当前所找到的最大质数的数量限制。

尽管大家都知道质数无穷,但是分解一个大数的质因子是很麻烦的,这也是为什么和素数有关的东西被广泛运用于密码学当中。

就在这时,林晓的门被敲响了,敲门的人是孙宇。

听到里面没有反应,孙宇无奈,林神这大概是又学入魔了。

不过,林晓之前告诉过他,如果敲门没有回应的话,他直接进去就行了,于是孙宇便直接打开了门,走了进去。

见到林晓果然端坐在桌子前,旁边叠满了一堆的草稿纸,孙宇悄悄走了上去,瞅了一眼,顿时想起了这东西会让自己道心不稳,当场差点没有瞎眼。

他迅速移开了眼睛,拍了拍林晓说道:“林神,去恰饭了,待会儿咱们还要去罗马尼亚大使馆弄签证呢,别忘了。”

林晓总算回过了神,听到孙宇的话后,便应道:“我知道了。”

低头看了看自己当前的进度,摇摇头,还是不太理想啊。

他现在开始从切圆多项式作为出发点,进行着自己的搭桥工作,但看起来还是有问题,现在也只能等之后再继续看看了,反正是7月15日之前提交报告。

不过,解决数学问题,也都是像这样,要慢慢的、一步步地来,出现问题是不可避免的,就算是试错也是一个过程。

所以也不需要灰心,更何况,林晓研究的可是素数领域中的世界性难题,他研究出来,别人还能够说他不行?

这就开玩笑了。

而旁边的孙宇看到林晓摇头,便不由问道:“林神,莫非你还遇到什么难题了?”

林晓点点头。

“我靠,居然还有能把你给难住的问题?”

孙宇一副大吃一惊的样子,林晓可是连世界难题都解决了的,还能遇到这么难的题?

他说道:“让我康康!”

就算是天书,他今天也要看一看。

“看呗。”

林晓将自己用了的草稿纸摆在他面前,然后收拾自己的东西,护照、身份证什么的,毕竟待会儿要去罗马尼亚驻华大使馆弄签证呢。

罗马尼亚签证不像米国那样需要很久才能下来,短期签证两天内就能办下来,时间紧迫的话一天都行。

而他们是去参加i摸比赛的,基本上去了后就能办下来,毕竟特事特办嘛。

至于那边看着林晓草稿纸的孙宇,脸上则只有懵逼,好像看了什么,又好像什么都没看。

“林神,你这写的什么啊?”

林晓瞥了一眼,说道:“梅森素数啊,你不知道?”

孙宇:“……好像知道,是不是有什么猜想是不是?”

“梅森素数是否有无穷多个,还有梅森素数的分布规律,关于分

目录
麻衣相师
返回顶部