第6部分(第2/4 页)
,是地球上的每一个正在生活着人的母系祖先。但是,这并不是说我们DNA的每一部分都在讲着同样的故事。因为性别重组,我们的基因组由大量独立进化的组织组成,也许这个区域的DNA能追溯到印度尼西亚,而另一个区域的源头却在墨西哥。那么“夏娃”的谱系是人类如何走出非洲的独特线索吗?
答案是,尽管更复杂,但在本质上,我们的DNA图谱与mtDNA的是同样的。研究贝塔球蛋白(生成血红蛋白编码)、CD4因子(生成控制免疫系统的蛋白)的多态性,和第21对染色体上的一个DNA区域,结果全部显示,和生活在非洲以外的人群相比较,非洲的人群具有更大的多态性,而且表明最早的非洲祖先距今至少约有200万年的历史。现在的问题是,我们使用基因标记来研究人类的迁徙历史,但这些标记在时间的流逝中被反复“洗牌”。多态性出现得越早,它们被“洗”的次数就可能越多。“洗牌”含糊了历史的信号,因此从我们的大多数基因组中,已经找不到迁徙的痕迹了。
但是近年来的研究发现,有一片DNA在推测人类进化历史方面堪称无价之宝,追踪我们祖先在大地之上漫游的足迹,它能告诉我们的线索,远比我们预想的要多得多。这就是只从父亲传给儿子的男性的“mtDNA”。与女性谱系的mtDNA相对应,它是男性谱系中决定性的因素。在普罗旺斯村庄里,它是“祖传秘方”,它能告诉我们已经灭绝的和流传下来的浓味鱼肉汤配方的故事详情,它就是Y…染色体。
稍等片刻,也许你要问,难道父方的谱系不是始终和母方的谱系共同在下一代中延续吗?一个新生命的孕育不是父亲与母亲的基因组各占50%的混合吗?为什么只有Y…染色体能追踪到人类迁徙的足迹?这难道不奇怪吗?对线粒体DNA来说,答案很简单,因为线粒体实际上位于基因组之外,它曾是远古的细胞内寄生的细菌,在进化的过程中变成了残存在细胞内的一种组织。相比于线粒体,Y…染色体要复杂得多。
产生性别的过程中,有一个离奇的现象,那就是决定性别的性染色体,在相互混合时不遵守50∶50的规则。因为我们的基因组是双份编排,每个染色体都有两个版本,当它们进行组合时无法避免地会出现错误,而大多数的动物的性别正由性染色体配对失误决定的。在哺乳动物中,雄性是X…染色体“错误地”与Y…染色体进行配对的结果,雌性的X…染色体与其他的染色体一样“正常地”有两个版本。因此,在雄性,Y只能与X在彼此的小区域内配对,以在细胞分裂的过程中组成性染色体。Y染色体中非重组的部分与X没有任何关联,因此,它找不到与它进行重组的可配对染色体。这样,它从一代传给另一代,永远避免了被“洗牌”的命运。在这一点上,它和线粒体基因组完全一样。
Y成为遗传学家研究人类多样性的最有效途径,部分原因是因为它不像mtDNA,mtDNA的一个分子大约有1万6千个核苷单位,Y比它大得多,一个分子大约有五千万个核苷,因此,它携带着许许多多过去发生的突变点。我们在上一章里已经讲到,具有多态性的区域越多,对我们的研究就越有利。如果只知道兰德斯泰纳的血型分类,所有的人只能被分成4类:A、B、AB和O,而Y能提供丰富、大量的多态性。更关键的是,和mtDNA相同,因为Y不发生重组,因此我们能够推断出其中变异产生的顺序。没有这个特点,我们便无法用朱克坎德和鲍林的方法来追踪谱系的故事,“奥卡姆的剃刀”也无法帮助我们找到我们的祖先。
Y如何能不经过重组而存在呢?我们已经知道,为了适合环境的变化,我们需要创造出更多的多样性,Y的现象是否与此相矛盾?简单地说,正是进化“决定”了Y不发生重组,这是因为Y上的功能基因数量很少。在不同的基因组中,活跃基因的数量差别极大,例如,在线粒体中是37个,一个基因组中基因的总量约为3万个,平均每个染色体约有1500个。在线粒体的细菌先祖中,数以千计曾经存在的基因,已经在几百万年里,随着时间的流逝而消失了。这是由于线粒体的寄生依赖性越来越强,在“溺爱”它的细胞中,它逐渐放弃了“自治权”,一些线粒体进入了DNA核,产生了这样奇怪的结果:我们基因组的一部分来自于细菌。因此,线粒体DNA的情况是,似乎某种力量强迫它失去自己的基因,转变成了细胞核中的关键组织,而细胞核中的重组也使线粒体在进化的竞争之中保留了下来。
电子书 分享网站
夏娃的“伊甸园”(2)
本章未完,点击下一页继续。