第2部分(第1/4 页)
俏薹ü钩伤亢粮拍睿灰虼宋颐谴��浴跋喽杂谠谑导噬峡煽醋鞲招缘囊桓霾慰嘉锾宓脑硕�薄9赜谙喽杂诓慰嘉锾澹ɑ鸪党迪峄蛱�仿坊�┑奈恢茫�谇敖谥幸炎髁讼晗傅墓娑āH绻�颐且�搿白�晗怠闭飧鲇欣�谑��枋龅墓勰罾创�妗安慰嘉锾濉保�颐蔷涂梢运担��橄喽杂谟氤迪崂喂痰亓�釉谝黄鸬淖�晗底吖�艘惶踔毕撸��喽杂谟氲孛妫�坊�├喂痰亓�釉谝黄鸬淖�晗担�蚴�樽吖�艘惶跖孜锵摺=柚�谡庖皇道�梢郧宄�刂�啦换嵊卸懒⒋嬖诘墓煜撸ㄗ置嬉庖迨恰奥烦獭���摺保�欢�挥邢喽杂谔囟ǖ牟慰嘉锾宓墓煜摺�
为了对运动作完整的描述,我们必须说明物体如何随时间而改变其位置;亦即对于轨线上的每一个点必须说明该物体在什么时刻位于该点上。这些数据必须补充这样一个关于时间的定义,依靠这个定义,这些时间值可以在本质上看作可观测的量(即测量的结果)。如果我们从经典力学的观点出发,我们就能够举出下述方式的实例来满足这个要求。设想有两个构造完全相同的钟;站在车厢窗口的人拿着其中的一个,在人行道上的人拿着另一个。两个观察者各自按照自己所持时钟的每一声滴嗒刻划下的时间来确定石块相对于他自已的参考物体所占据的位置。在这里我们没有计入因光的传播速度的有限性而造成的不准确性。对于这一点以及这里的另一个主要困难,我们将在以后详细讨论。
4.伽利略坐标系
如所周知,伽利略…牛顿力学的基本定律(称为惯性定律)可以表述如下:一物体在离其他物足够远时,一直保持静止状态或保持匀速直线运动状态。这个定律不仅谈到了物体的运动,而且指出了不违反力学原理的、可在力学描述中加以应用的参考物体或坐标系。相对于人眼可见的恒星那样的物体,惯性定律无疑是在相当高的近似程度上能够成立的。现在如果我们使用一个与地球牢固地连接在一起的坐标系,那么,相对于这一坐标系,每一颗恒星在一个天文日当中都要描画一个具有莫大的半径的圆,这个结果与惯性定律的陈述是相反的。因此,如果我们要遵循这个定律,我们就只能参照恒星在其中不作圆周运动的坐标系来考察物体的运动。若一坐标系的运动状态使惯性定律对于该坐标系而言是成立的,该坐标系即称为“伽利略坐标系”。伽利略…牛顿力学诸定律只有对于伽利略坐标系来说才能认为是有效的。
5.相对性原理(狭义)
为了使我们的论述尽可能地清楚明确,让我们回到设想为匀速行驶中的火车车厢这个实例上来。我们称该车厢的运动为一种匀速平移运动(称为“匀速”是由于速度和方向是恒定的;称为“平移”是由于虽然车厢相对于路基不断改变其位置,但在这样的运动中并无转动)。设想一只大乌鸦在空中飞过,它的运动方式从路基上观察是匀速直线运动。用抽象的方式来表述,我们可以说:若一质量M相对于一坐标系K作匀速直线运动,只要第二个坐标系K'相对于K是在作匀速平移运动,则该质量相对于第二个坐标系K'亦作匀速直线运动。根据上节的论述可以推出:
若K为一伽利略坐标系,则其他每一个相对于K作匀速平移运动的坐标系K'亦为一伽利略坐标系。相对于K',正如相对于K一样,伽利略…牛顿力学定律也是成立的。
如果我们把上面的推论作如下的表述,我们在推广方面就前进了一步:K'是相对于K作匀速运动而无转动的坐标系,那么,自然现象相对于坐标系K'的实际演变将与相对于坐标系K的实际演变一样依据同样的普遍定律。这个陈述称为相对性原理(狭义)。
只要人们确信一切自然现象都能够借助于经典力学来得到完善的表述,就没有必要怀疑这个相对性原理的正确性。但是由于晚近在电动力学和光学方面的发展,人们越来越清楚地看到,经典力学为一切自然现象的物理描述所提供的基础还是不够充分的。到这个时候,讨论相对性原理的正确性问题的时机就成熟了,而且当时看来对这个问题作否定的签复并不是不可能的。
然而有两个普遍事实在一开始就给予相对性原理的正确性以很有力的支持。虽然经典力学对于一切物理现象的理论表述没有提供一个足够广阔的基础,但是我们仍然必须承认经典力学在相当大的程度上是“真理”,因为经典力学对天体的实际运动的描述,所达到的精确度简直是惊人的。因此,在力学的领域中应用相对性原理必然达到很高的准确度。一个具有如此广泛的普遍性的原理,在物理现象的一个领域中的有效性具有这样高的准确度,而在另