第11部分(第3/4 页)
种说法也适用于传递性运演等等。
①“分割”是确定量度单位,“位移”是确定某一量度对象包含有多少个单位,这实际上就是进行“包含除法”的具体运算。——译注
B。现在让我们谈谈逐步被结构化的结构的严格性和必然性。梅耶逊是想把推理的作用归结为只限于运用同一性的过程的,他有“哲学的勇气”坚持认为:数学创新到何种程度,它就从现实借用到何种程度,并在这同样的程度上变成非理性的。就梅耶逊的观点说,只有同一性会给我们以不证自明性,而“根本不同”则超出了理性思维的范围:所以,运演本身可以认为是部分地自现实派生出来的,因为运演扩展了活动的范围;而且运演又引来了一个将随建构的增加而不可避免地增加的非理性因素。这种观点是有趣的,因为它暗示在丰富性和严格性之间有一种反比关系——虽然这不是在逻辑实证论的意义上说的,在逻辑实证论中标志着整个数学特性的那种同语反复,则暗示的是最大的严格性和最少的新异性。再者,梅耶逊是比戈布劳更为前后一致的,按照梅耶逊的观点,说明数学的富有成效性的那些运演建构仅仅是从早已被公认的命题中推导出来的。但是,已被公认的命题要末事先就包含着运演建构所得到的结果,因而就没有什么创新;要末并没有包含运演建构所得到的结果,那么在这样的情况下,已被公认的命题又如何能证实新命题的正确性呢?因为光是在早先的结构和新结构之间的无矛盾性是不足以保证新结构的必然性的。
需要说明的显著而又几乎自相矛盾的事实是:丰富性和必然性总是连在一起的。不可否认,所谓“现代”数学的显著进展,是以数学进展的两个互相关联的方面,即以增多了的建构性和提高了的严格性作为其特点的。所以,我们一定要在这些结构本身的建构的内部来探索这种以前布特罗曾称之为“内在必然性”的秘密。此外,看来区分必然性的两种水平是合理的:用科尔努的话来讲,这两种水平就是单纯的逻辑论证和为应予论证的结论提出“理由”的那些论证。前者只是使我们能看到结论是怎样从已把结论包含于其中的那些前提的组合中推导出来,而后者则抽象出一种导致结论的合成法则,这个法则再次把建构性和严格性集拢在一起。
一个特别明显的例子是由递归推论所提供的,在那里论证是以数的完整序列为基础,以致对一个结构的内部特性是根据整个体系的规则和这个结构的反复迭代来阐明的。而且存在着一种发生学上的显著类比(《研究报告》第十七卷)。归类和序列化的综合产生了数,但只是在七岁到八岁时才产生数的集合体的守恒;然而五岁半以上的被试,让他用一只手一次把一个珠子放到一个看得见的容器里,同时又用另一只手把珠子放到一个盖着布帘的容器里时,他们能够领会这两个集合体是会保持相等的。一个在别的测验中没能解决守恒问题的五岁儿童说:“只要你懂了一次,你就一直会懂”。(这似乎可以这样解释:每一次增加一个珠子就等于归类时的序列化,而手的运动的继续也有它自己的顺序,这引起了归类和序列化的局部而短暂的综合。)
总之,如果结构的增多是丰富性的标志,那末,结构的内部组合法则(例如可逆性P。P-1=0;无矛盾性的起点)或外部组合法则(结构间的同构性),仅只根据结构的反复迭代所引起的那些闭合作用以保证结构的必然性(从发生学的观点去看传递性的例子:见本书第一章第四节)。但是在这里区分结构化的不同程度是有用的。因此,我们可以把那类结构称为“弱结构类”,在这类结构中不存在一条组合定律,使我们能从整体的特性过渡到部分的特性(例如从无脊椎动物过渡到软体动物)或从一个部分的特性过渡到另一个部分的特性(从软体动物过渡到腔肠动物);并且把那些隐含着这种获得了良好调节的转换的结构(例如,群和它的子群)称为“强结构类”。这个在发生学水平上已然是正确的区分,也许同自戈德尔的工作以来就流行的那种关于结构“强度”有大有小的概念是有关联的。我们甚至不排除区别出不同程度的矛盾的可能性:例如,对我们说来,断言n-n0,似乎就比断言一种弱结构的质的类A-A0更加矛盾。无论如何,虽则在算术上可以证明一切零类都是同一的,但没有土豆并不等于没有菠菜。①
①有一个过分讲逻辑的餐馆主人的故事:他拒绝供应“不带土豆的牛排”,因为那一天他没有土豆;但是他却提出要供应“不带菠菜的牛排”来代替,因为他有着一些菠菜。
C。现在来谈谈数学和现实之间的关系。让我们首先
本章未完,点击下一页继续。