第53部分(第4/4 页)
不论这这篇证明“周氏猜测”的论文到底能不能成功,冲着作者敢于向世纪难题挑战的精神,蒋业就很欣赏。
即便他是《数学年刊》这本SCI的学术编辑,相对而言,平日里看到的论文已经是比较质量的,可也不是每一篇来投稿的论文,都敢向这种世纪难题挑战。
挺难得的。
不过,还是先看正文吧,再耽误一会儿,他就得去开会了。当然,如果发现了问题,他也得注意着给审核建议时措辞和语气稍微温和一点,不能打击了人家的研究积极性。
这样想着,蒋业便开始看论文。
【摘要:周海中于1992年在《梅森素数的分布规律》一文中提出的猜测,被国际上命名为“周氏猜测”:当2^(2^n)<p<2^(2^(n 1))时,Mp有2^(n 1)-1个是素数。本文证明这个猜测是肯定的。并据此作出推论:当p<2^(2^(n 1))时,Mp有2^(n 2)-n-2个是素数。】
这个摘要写得很简单,就是把“周氏猜测”的来源、提出人、猜测内容以及推论,全都说了一遍,表示自己证明的就是这个猜测,连带把推论也一起证明了。
还挺直击重点的,不废话。
蒋业笑了下。
【关键词:周氏猜测;梅森素数;证明;】
这个比较中规中矩。
蒋业扫了一下,觉得没有问题,便开始看正文了。
对一个猜测的证明论文,要不就是证明成立,要不就是证明不成立,但都要有理有据。
这有点像是律师在法庭为当事人辩护,必须拿出绝对有力的证据,给出足够有说服力的且合乎法律条文的理由,才能让法官相信你说的是真的,并给出相应的判断。
因为曾经研究过“周氏猜测”很长一段时间,还试着证明过许多次,蒋业对它很了解,不需要太费劲,就能顺利按照作者写论文的思路看下去。
起初,蒋业是抱着鼓励的态度在看,认真寻找论文证明过程的逻辑漏铜。
但看着看着,他唇角的笑就满满抑了下去,取而代之的,是逐渐挺直的腰板和渐渐拧紧的眉头,还有亮得惊人的眼眸。
伸手,从电脑旁的笔筒里拿出一支黑笔,随手将一份废掉的单面打印文件翻过来,便�
本章未完,点击下一页继续。