第7部分(第3/4 页)
是非常之笼统的,这种方法却显示出一种有效的运演的结构作用。同样,人们看到儿童在了解交叉方面也有明显的进展。虽然二因素矩阵所代表的笛卡儿乘积,作为完整的乘法结构在七岁到八岁水平上是容易掌握的(几乎是在这同一个时候,儿童也掌握了处置加法群集中的不连贯类的方法),两个或几个连贯类的交叉却只是在当前这个水平上才能掌握;在许多情况下,对AB<B这个归类作量的区分,儿童也只是在当前这个水平上才能掌握。
另一方面,在因果关系领域内,九岁到十岁这个水平显示出相当大的进展和同样显著的缺欠——有时在某种意义上说显得是退步——这两者有些难于理解地混杂在一起。我们先谈谈所获得的进展。直到这个水平以前,动力学的考虑和运动学的考虑还是没有分化的,这是由于身体的运动连同它的速度被认为是一种经常被称为是“冲动”的力。然而,在九岁到十岁水平,就发生了分化,也产生了协调,以致身体的运动特别是它们的速度的变化需要有一个外因的参预。而这个外因的作用可以用如下的符号来表示,即在一般时间t和一般距离e上发生的力f(即fte):在fte→dp这个意义上,则fte=dp,其中dp=d(mv)而不是mdv,而在前一阶段,我们看到的只是ftedp,或者甚至是ftep。不到下一阶段儿童是不会有加速度的概念的(参看f=ma)。某些涉及方向概念或前向量概念的进步是以力和运动的分化为基础的,这使得儿童现在既考虑主动移动着的物体的推和拉的方向,又考虑被推被拉物体的阻力(虽然其潜在概念只是一个制动效应的概念,还没有任何反作用的概念)。重量对这个进展提供了一个清楚的例证。例如,处于倾斜位置的棍子,直到这个时候以前都被认为是向它倾斜的方向落下去的,而在现在这个水平上则认为它是垂直地下落的。由此往后,要使一个玩具汽车爬上一个斜坡,就认为必须施加比把它保持在固定位置上更多的力,而在前一个水平上则儿童的认识与此相反——那时儿童认为,因为要使汽车保持不动,它会有一个掉下来的倾向,而用力把它往上推时它就不再向下掉了!重要的是,水表面的水平性在这以后被解释为由于液体有重量(直到这个时候之前,液体则被认为是几乎没有重量的,因为它有流动性),由于液体有往低处流的倾向,它排除液面高度的不等:在这里我们看到了形象之间的空间建构(在自然座标)与因果领域内的进步二者之间的紧密的相互依存关系,作为这种依存关系的结果,儿童就有了力和方向的概念,而且不再像这个时期以前那样,认为力和方向仅仅依存于水及其容器之间的相互作用了。
但是,这个因果性概念得到发展的代价是,被试给他自己提出了一系列新的动力学问题却不能掌握它们;这种情况有时从表面上看似乎是退步。例如,根据重物从此以后是垂直地下落这一事实,他就容易认为这重物挂在一根绳的下端比在它上端称起来要重些(尽管把重物挂在一根绳子的上端这种看法并不能成立,因为重物马上会下落……)。或者,他又会认为一个物体的重量会随着对物体的推力而增加,又随着物体速度的增加而减少,似乎人们会从p=mv导出m=pv似的;如此等等。很清楚,这样的假定阻碍着儿童对加法组成等等的掌握,并且引起了儿童表面上看起来是倒退的反应。为应付他的困难,儿童就区别出两个方面或两个领域,一方面,他把重量看作是物体的一个不变的特性;的确,也正是在这个水平上我们第一次看到客体在形状改变下重量的守恒,以及序列化传递性和其它一些可适用于这个概念的运演性组成。但在另一方面,他又断定重量的效果是可变的,简单地肯定物体的重量在某些情况下比在其它情况下“拿起来”或“称起来”(或“拉起来”)等等显得重些:这样说是不假的,但是,只要重量没有如在下一个阶段那样和空间大小(长度、面积,或体积),以及力矩、压力、密度或相对重量、尤其是功等等概念联结起来,那重量概念就仍然是不完全的,并且是武断的。
总的来说,具体运演阶段的第二水平展现出一个自相矛盾的局面。直到现在以前,从主客体之间未分化的最初水平开始,我们已观察到在两个方向上的互相补充和相对地等值的进展:已有了活动的内部协调,随后又有主体的运演的内部协调,也有了活动的最初是心理形态学的外部协调,这些活动随后成为运演的活动并被归因于客体。换句话说,我们已经一个水平一个水平地观察到两种密切相关的发展,即:逻辑数学运演的发展和因果关系的发展,就把形式归因于内容这个方面来说,
本章未完,点击下一页继续。