第5部分(第3/4 页)
少。要好好看还是得用目镜。目镜不过是一个小眼镜,从根本上说与钟表匠使用的眼镜是同类的。目镜的焦距愈短,观察愈精确。
常有人问:著名望远镜的放大倍率有多么大?答案是:望远镜的放大率不仅依赖物镜,也还要看目镜的。目镜的焦距愈短,放大率愈大。天文望远镜都有许多不同的目镜的,依观测者的需要而用。
在几何光学原理允许的范围之内,我们可以在任何望远镜(不论大小)上得到任何放大率。用一个平常的显微镜来看影像,我们可以使一个10厘米小望远镜拥有与赫歇耳的大反射望远镜同等的放大率。可是要使任何望远镜的倍率超过一定程度是有许多实际困难的:首先是物体表面发出的光很弱。假设我们用一个8厘米望远镜望土星,使它有数百倍的放大率,土星便显得黯淡不清楚了。但这还不是使小望远镜有高放大率的唯一困难。按照光学的一般定律,是不允许我们能把每2.5厘米口径的放大率提高到50倍以上,或者最多说也不能超过100倍的。这就是说,用一架2.5厘米口径的望远镜我们不能得到150倍以上放大率,更不用说超过300倍了。
书 包 网 txt小说上传分享
望远镜中的透镜(3)
可是还有一类困难特别使天文学家觉得不好办的。这就是由地球大气而产生的模糊,就是平常所说的看不清楚。
我们看天体是要透过一层厚厚的大气的。大气如果压缩到和我们周围的空气一样密,就会有十千米左右的厚度。我们知道,看一件10千米外的东西,会看到它的轮廓是模糊的。主要的原因就是光线所必须透过的大气永不停息地搅动,引起不规则的折射,使物体显得波状颤抖着。这样产生的轮廓柔化与模糊在望远镜中还要加上许多倍。结果,我们加大了放大率,同时也依同等比例加大了影像中的模糊。这种模糊程度的深浅大半只依赖于空气的情形如何。天文学家考虑到这个问题,于是为大望远镜寻找空气宁静的地方,以便观测的天体轮廓尽量清晰。
我们常见到一些计算说用高倍率大望远镜可以把月亮搬得多么逼近。譬如说,用一架1 000倍放大率的,我们看它似乎在400千米以外;用一架约5 000倍的,就似乎只在80千米之外了。这种计算倒是不错的,如果单从月亮上的任何东西的目视大小来说,望远镜的缺点以及大气扰动而带来影响,足以把这一切变得模糊不清。这两层毛病的结果使上述的计算不能切合实际。我很怀疑任何天文学家使用现有的任何望远镜来观测月亮或行星一类的东西时,把放大率加到千倍以上还能得到多大的好处,除非遇上了一个大气异常平静的机会。
书 包 网 txt小说上传分享
望远镜的装置(1)
那些根本未见过望远镜的人大概会以为使用望远镜观测天体是极其简单的事情,只需把望远镜对着某一天体,然后观测就是了。可是我们不妨试验一下这种办法,把望远镜指着一颗星,一件也许出乎我们意料的事立刻就会引起我们的注意。那颗星并没有静静地守在望远镜的视野(或者说望远镜中的小圆形的天空)中等我们去观测,却很快地逃了出去。这是因为地球绕自己的轴旋转,星辰便仿佛向相反的方向转了。这种运动的速度与望远镜的放大率同比例地加大。若用高倍率的望远镜,我们还未来得及观测时,星早已逃出我们观测的范围了。
现在我们必须记得我们从望远镜中所见的视野也是同样因为望远镜的放大作用而被缩小了的,因此它实际的观测范围比看起来要小得多,缩小的倍率正等于望远镜的放大倍率。举例说,如果用的是千倍的,那么普通望远镜的视野便会是约2分的角度,这一小块天空在肉眼看起来不过是一点罢了。这简直就像我们从一座6米高的屋顶上一个直径3.5厘米的小洞中去看星星一样。如果我们想象一下从这样的小洞中望星,便不难明白要找到一颗星并追随它的运动是多么难办的事了。
解决这问题的方法就是适当地装置望远镜,使它在互成直角的两轴上旋转。“装置”的意思是指整套仪器,借它的帮助我们可以使望远镜指定一颗星,并追随它的周日运动。我们不想一开始就讲述这种仪器的详细机理,以免分散读者的注意力。我们先来一个大纲,说明转动望远镜的两轴间的关系。主要的一根轴叫做“极轴”(polar axis),装得恰好与地球的轴平行,因此正对着天极。因为地球每天从西向东旋转,便有个装置连着这根轴,使它以同等的速度从东向西旋转。于是地球的旋转似乎被望远镜的相当
本章未完,点击下一页继续。