会员书架
首页 > 游戏竞技 > 策略思维特征 > 第7部分

第7部分(第1/4 页)

目录
最新游戏竞技小说: 我!开局三个天赋技能太多了SS级天赋,代价是变成女生?领主:我愿建立一方乐土王屠霸业心火沸腾你为什么不打篮球?球神双职业,无限重置,阁下如何应对LOL:我真不是演员啊!第四天灾:玩家对抗玩的就是真实足球教练,我选择国足全民巨鱼求生:我能听到巨鱼心声霸球道绽放于冬网游三国:从南海开始,虎视天下网游大神饶了我规则怪谈:贫僧唐三藏,百无禁忌!我的世界之开局无限资源火影之我在木叶砸金蛋

首先,假设整个过程总共只有一步。桌子上放了一个冰淇淋蛋糕;一个孩子(Ali ,阿里)向另一个孩子(Baba

,巴巴)提议应该如此这般分配。假如巴巴同意,他们就会按照提议分享这个蛋糕;假如巴巴不同意,蛋糕融化,谁也吃不到。

现在,阿里处于一个强有力的地位:她使巴巴面临有所收获和一无所获的选择。即便她提出自己独享整个蛋糕,只让巴巴在她吃完之后舔一舔切蛋糕的餐刀,巴巴的选择也只能是舔一舔,否则他什么也得不到。

当然,巴巴可以因为感到这么分配太不公平而生气,断然拒绝接受这一条件。又或者,他可能希望建立或者保持自己作为一个不好对付的讨价还价者的形象,从而为日后的讨价还价奠定基础,而日后的讨价还价可能是跟阿里进行,也可能是跟其他得知今天自己所作所为的孩子们进行。在实际操作当中,阿里同样需要考虑到这些问题,要向巴巴放出刚好足够的诱饵(比如一小片蛋糕?)

,引诱他上钩。为简化阐述过程,我们将所有这些复杂问题搁在一边,假设阿里可以拿走她所要求的100%的份额。实际上,我们还可以不考虑留给巴巴舔的餐刀,假定阿里有能力提出“接受或者放弃”的条件,她可以得到整个蛋糕。①①

同样的简化做法还将用在我们对更多回合的建议和反建议的讨论上。读者可以很方便地将我们的分析套用到一个更接近现实、但也更庞大的决策过程中,这个过程可以将我们在这里忽略的复杂情况包含在内。

一旦出现第二轮谈判,局势就会大大偏向巴巴。不妨再设想一下,现在桌子上放了一个冰淇淋蛋糕,但是两轮谈判过后,整个蛋糕就会融化。假如巴巴拒绝接受阿里提出的条件,他可以提出一个反建议,不过,到这时,桌子上只剩下半个蛋糕了。假如阿里拒绝接受巴巴的反建议,剩下的半个蛋糕也会融化,双方都会一无所获。

现在,阿里必须向前展望她最初提出的条件会有什么后果。她知道,巴巴可以拒绝她的条件,从而占据有利地位,反过来就剩下的半个蛋糕提出“接受或者放弃”的分配方案。这实际上意味着巴巴已经将那半个蛋糕掌握在自己手里。因此,他不会接受任何低于阿里第一轮条件的反建议。假如阿里不能阻止这一幕发生,她将一无所获。一旦看清了这一点,她会从一开始就提出与巴巴平分这个蛋糕,这正是刚好足够引诱对方接受而又为自己保有一半收益的条件。于是他们会马上达成一致,平分这个蛋糕。

说到这里,个中原理已经非常清楚,我们的讨论还可以再进一步。分析结果是相同的,要么加速谈判进程,要么延缓蛋糕融化速度。随着谈判各方提出每个建议和反建议,蛋糕也在融化,从一个变成2/3再变成1/3,直到零,什么也剩不下。假如阿里提出最后一个建议,而蛋糕已经缩小到只有1/3,她就可以全部拥有。巴巴知道这一点,所以在轮到自己提条件的时候(这时蛋糕还剩下2/3)许诺分给她1/3。这么一来,巴巴可以得到的最好结果就是1/3

个蛋糕,即剩下的2/3的一半。阿里知道这一点,所以从一开始就许诺分给巴巴1/3 (刚好足够引诱对方接受),自己得到2/3

。各得一半的分配方案存在什么规律吗?每一次的步骤数目都是偶数,且这一现象反复出现。更重要的是,即便步骤数目是奇数,随着步骤数目增加,双方也会越来越接近一半一半的分配方案。

若是四步,巴巴得以提出最后一个条件,从而得到这个时候桌子上剩下的1/4个蛋糕。因此,阿里必须在倒数第二轮提出分给巴巴1/4

个蛋糕,当时桌子上还剩下半个蛋糕。而在此前的一轮,巴巴可以让阿里接受分给她剩下的3/4个蛋糕中1/4个蛋糕的条件。因此,一路这么向前展望下去,在讨价还价一开始,阿里就应该提出分给巴巴半个蛋糕,自己得到另一半。

若是五步,阿里一开始可以提出分给巴巴2/5个蛋糕,自己得到3/5

。若是六步,那么分配方案又回到各得一半。若是七步,阿里得到4/7,巴巴得到3/7。更为普遍的情况是,假如步骤数目是偶数,各得一半。假如步骤数目n是奇数,阿里得到(n+l)/(2n),而巴巴得到(n…1)/(2n)。等到步骤数目达到101,阿里可以先行提出条件的优势使她可以得到51/101个蛋糕,而巴巴得到50/101

个。

在这个典型的谈判过程里,蛋糕缓慢缩小,在全部消失

目录
中国知青终结不可名状的前男友三生定许青鸾去结婚以后请闭眼霸王迷路(下)迫嫁痞夫结
返回顶部